top of page

Life Cycle Assessment

On this Project:

bbf17e_49e3cbadc95b4d3a94ac409536b80791~mv2.jpg.webp

Bill Collinge

PhD, Post Doc

Vaclav Hasik_2447 (2).JPG

Vaclav Hasik

PhD

111.webp

Harold Rickenbacker

PhD

Integrating IAQ & LCA - The Pittsburgh 2030 Districts

Comprised of 85 business owners/partners, 438 properties, and 76 million square feet of space, the Pittsburgh 2030 District , has joined the Architecture 2030 Challenge to achieve 50% reductions in water use, energy consumption, and carbon emissions by the year 2030. Fourteen cities across the nation have joined the Architecture 2030 Challenge; unique to the Pittsburgh 2030 Districts is the inclusion of dynamic life cycle assessment (D-LCA) based models and real-time pollutant monitoring to develop urban GHG inventories from external and internal emission sources.

Indoor air quality (IAQ) assessments have been conducted in seven representative buildings ranging from green certified (LEED Platinum, Living Building Challenge, etc.) to conventional buildings. Seasonal concentrations of ozone, carbon monoxide, carbon dioxide, temperature, relative humidity, formaldehyde, total volatile organic compounds, black carbon, and particulate matter, are monitored in each building; the results are used to identify potential source points and hotspots that impact declining employee health and productivity. 

HVAC system modifications that change ventilation or filtration rates can have an impact on IAQ, whereas almost any energy use reduction can have an indirect impact by reducing emissions from the upstream processes used in power generation inclusive of – but broader than – the energy conservation district (ECD) itself. Internal health and productivity impacts from external sources will be somewhat lowered, but internal impacts from internal sources have to be further quantified. These types of tradeoffs or synergies have been identified conceptually, but the development of a indoor environmental quality and dynamic life cycle assessment framework (IEQ+DLCA) has significant promise to improve the quantification and regional variability in these measures.

Associated Publications

Rickenbacker, H.J., Collinge, W.O., Hasik, V., Ciranni, A., Smith, I., Colao, P., Sharrard, A.L., Bilec, M.M.* (2020). “Development of a Standardized Protocol and Data-Driven Survey Instrument for Indoor Air Quality Assessments in Energy Conservation Districts.” Sustainable Cities and Society, 52(2020) 101831. https://doi.org/10.1016/j.scs.2019.101831

bottom of page