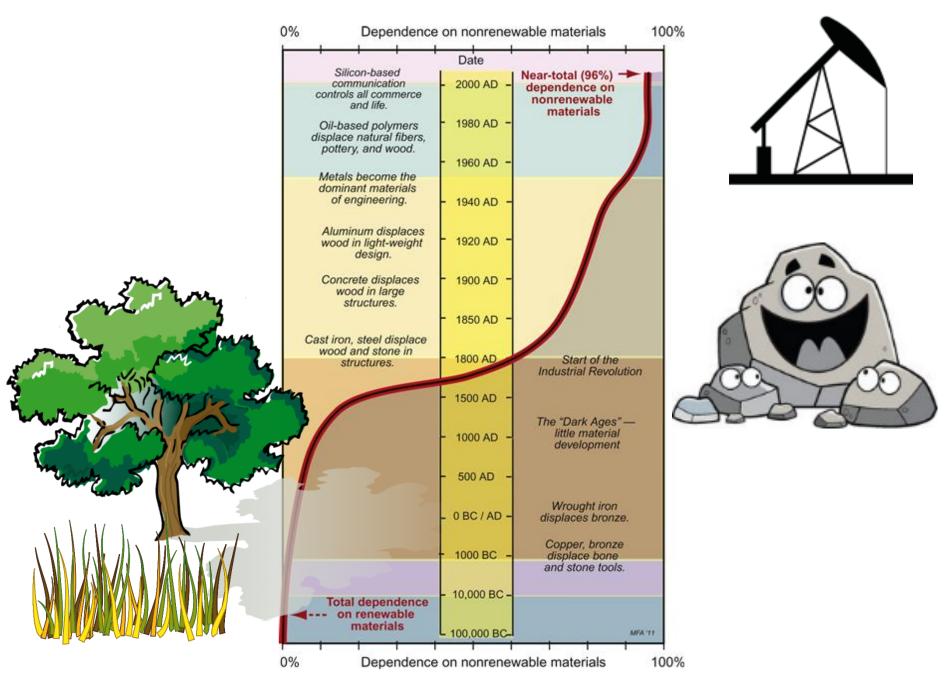
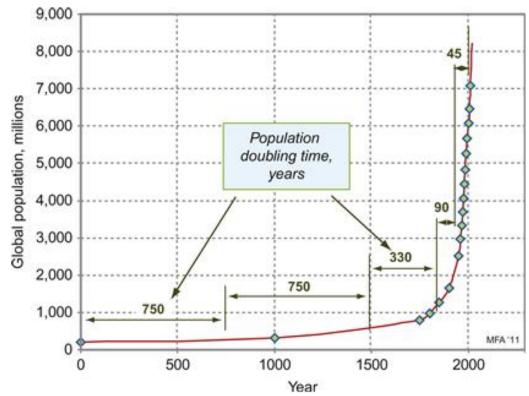

Materials Unit: Critical Materials

CEE 1610/2610: Engineering and Sustainable Development

Special THANK YOU to Cassie Thiel!


How do we

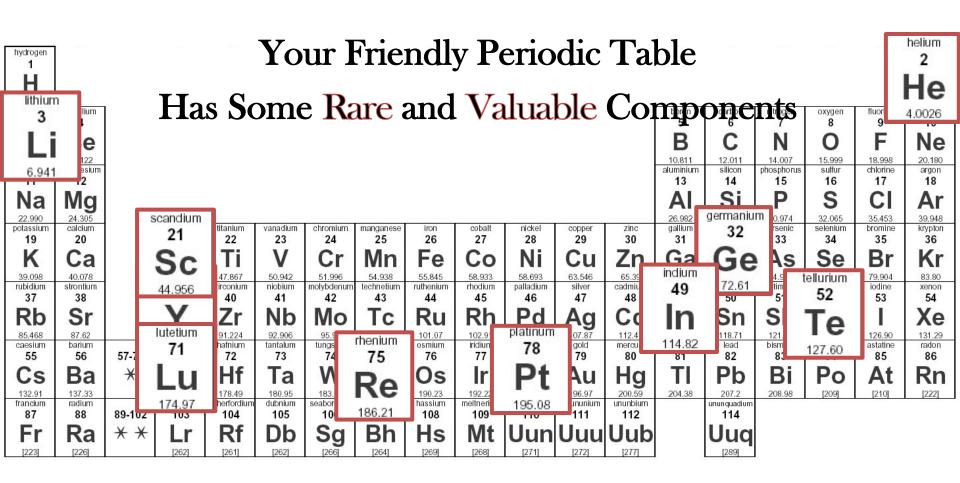
USE MATERIALS?



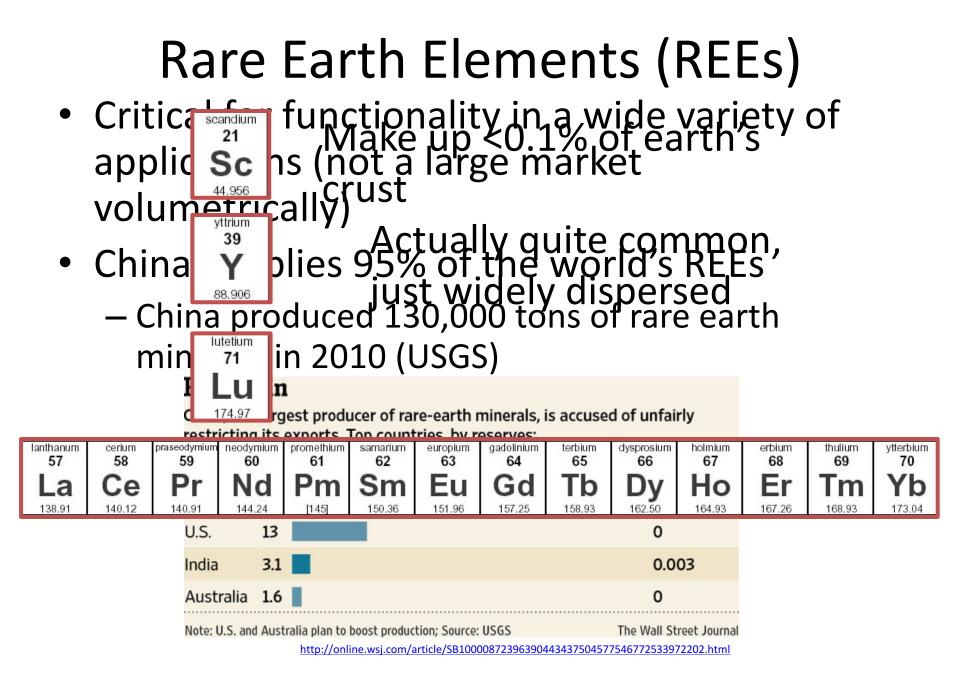
SOURCE: Materials and the Environment: Eco-Informed Material Choice Book by Michael F. Ashby

SOURCE: Materials and the Environment: Eco-Informed Material Choice Book by Michael F. Ashby Date Molecular (1980-present) Age 250 Nano materials 2000 AD Biopol biopolymers (1990) PEEK, PES, PPS (1983) Polymers (1985) "Warm" LLDPE (1980) Age 1980 AD superconductors Polysulfone, PPO (1965) (1962) Carbon fibers, CFRP Polyimides (1962) Acetal, POM, PC (1958) (1961) Shape memory alloys PP (1957) 1960 AD 1957) Amorphous metals HDPE (1953) 947) Transistor-grade silicon PS (1950) 1947) Super alloys Lycra (1949) 1940 AD 1909-1961) Actinides* Formica (1945) (1942) GFRP (1940) Plutonium* PTFE (Teflon) (1943) PU, PET (1941) (1828-1943) Lanthanides* 1920 AD PMMA, PVC (1933) Neoprene (1931) 1912) Stainless steel Steel Synthetic rubber (1922) 1890) Aluminum production Age 1900 AD Bakelite (1909) (1880) Glass fiber Alumina ceramic (1890) (1856) Bessemer ste Celllose acetate (1872) (1823) Silicon* (1808) Magnesium* E POTRIO L'IOUT 1850 AD (1791) Strontium*, Ti Reinforced concrete (1849) (1789) Uranium* uicanized rubber (rowy) (1783) Tungsten*, Zir Cellulose nitrate (1835) 1800 AD (1765) Crucible stee (1751) Nickel* (1746) Zinc* Rubber (1550) 1500 AD (1737) Cobalt* (1735) Platinum* SOURCE: battleofhomestead.org (1500) Iron smelting

SOURCE: Materials and the Environment: Eco-Informed Material Choice Book by Michael F. Ashby


SOURCE: Materials and the Environment: Eco-Informed Material Choice Book by Michael F. Ashby

What We'll Cover in the Materials Unit


- Critical Materials (in the molecular age)
- Material Flow Assessment
- Life Cycle Thinking
- Perspective and Summary

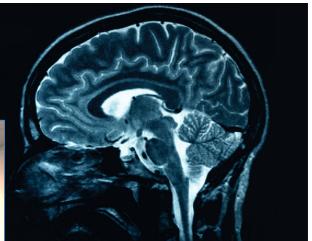
What is a

CRITICAL MATERIAL?

×	lanthanum 57	cerium 58	praseodymiun 59	n neodym 60	um pr	romethium 61	samarium 62	europiu 63	um gao	dolinium 64	terbium 65	dysprosiu 66	2000	mium 67	erbium 68	thulium 69	ytterbium 70
0	La	Ce	Pr	No	1	Pm	Sm	Eu	ı (Gd	Tb	Dy	H	lo	Er	Tm	Yb
	138.91	140.12	140.91	144.2	4	[145]	150.36	151.9	6 1	57.25	158.93	162.50	16	64.93	167.26	168.93	173.04
*	* Actinide	series	89	90	91	92	93	94	95	96	97	98	99	100	101	102	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	

Why do

CRITICAL MATERIALS


matter?

Most of the **new technologies** we rely on

to improve our energy consumption and live more sustainably

CONTAIN CRITICAL MATERIALS.

Beyond that, they are present in many everyday objects.

What are the

CONCERNS

with critical materials?

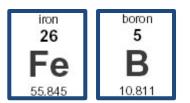
hydrogen Neodymium (Viewpoint: USDOE) H Helium (Viewpoint: Scientists)	2 1e 0026
H H	le
Intrinuit beryllum intropen oxygen fluor 4 Li Be C N O F 6.941 9.0122 5 6 7 8 9 sodium magnesium 11 12 14.007 15.999 18.998 sodium magnesium 13 14 15 16 17 Na Mgg 22.990 24.305 26.982 28.086 30.974 32.065 35.453 potassium calcium titanium vanadium chromium manganese iron cobalt nickel copper 2inc gailium gailium gailium gailium gailium assenic selenium thromine 19 20 K Ca 25 26 27 28 29 30 31 assenic selenium thromine 19 20 K Ca Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br	0026
aintain be solution (a) be solution (b) be solution (c) be solution (c) c) be solution (c) c) c) <thc)< th=""> c) <thc)< th=""> c)<</thc)<></thc)<>	
6.941 9.0122 sodium magnesium 11 12 Na Mg 22.990 24.305 potassium calcium 19 20 K Ca 39.098 40.078 rubidium strontium 37 38	Ne
sodium 11 magnesium 12 solicon 13 magnesium 14 silicon 15 phosphorus 16 suffur 17 chlorine 17 Na 22.990 24.305 potassium 19 20 K Ca 39.098 40.078 rubidium 37 38 V Cr Mn 41 42 43 44.956 47.867 50.942 51.996 54.39 58.693 58.693 65.546 65.39 69.723 72.61 74.922 78.96 79.904 101 101 11 12 12 12 13 14 14 15 15 16 16 17 18 19 20 13 31 32 33 34 35 16 17 18 19 19 10 10 10 10 10 10 10<	
11 12 Na Mg 22.990 24.305 potassium calcium 19 20 K Ca 39.098 40.078 rubidium strontium 37 38	20.180 argon
22.990 24.305 26.982 28.086 30.974 32.065 35.453 potassium calcium 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 M Ca Scandium 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 M Ca Scandium 12 22 23 24 25 26 27 28 29 30 31 32 33 34 35 M Ca Man Fee Co Ni Cu Zn Ga Ge Ass Seenium bromine 39.098 40.078 71.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.39 69.723 72.61 74.922 78.96 79.904 vitrium zirconium niobium molybdenum technetium ruthenium ruthenium ruth	18
potassium 19calcium 20scandium 21titanium 22vanadium 23chromium 24manganese 25iron 26cobalt 26nickel 28copper 29zinc 30gallium 31germanium 32arsenic 33selenium 33bromine 341920212223242526272829303132333435KCaTiVCrMnFee 54.938CoNiCuZnGaGeAssSeBr39.09840.07844.95647.86750.94251.99654.93855.84558.93358.69363.54665.3969.72372.6174.92278.9679.904rubidiumstrontium334041424344454647484950515253	Ar
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 K Ca Sc Ti V Cr Mn Fee Co Ni Cu Zn Ga Ge As Se Br 39.098 40.078 44.956 47.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.39 69.723 72.61 74.922 78.96 79.904 rubidium strontium 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	39.948 krypton
39.098 40.078 44.956 47.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.39 69.723 72.61 74.922 78.96 79.904 rubidium strontium 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	36
rubidiumstrontiumstrontiumyttriumzirconiumniobiummolybdenumtechnetiumrutheniumrhodiumpalladiumsilvercadmiumindiumtinantimonytelluriumiodine3738394041424344454647484950515253	Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	83.80 xenon
Rh Sr Y Zr Nh Mo Tc Ru Rh Pd Ag Cd In Sn Sh Te I	54
	Хе
85.468 87.62 88.906 91.224 92.906 95.94 [98] 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90	131.29
caesium barium lutetium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine 55 56 57-70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85	radon 86
Cs Ba 🗶 Lu Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At	Rn
132.91 137.33 174.97 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 [209] [210]	[222]
francium radium lawrencium rutherfordium dubnium seaborgium bohrium hassium meitnerium ununnilium unununium ununbium ununguadium	[LLL]
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq	
[223] [226] [262] [261] [262] [266] [264] [269] [268] [271] [272] [277] [289]	

*Lanthanide series	lanthanum 57	58	praseodym 59	neodymium 60	omethium 61	62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr 140.91	Nd	Pm	Sm	Eu	Gd	Tb	Dy 162,50	HO 164.93	Er	Tm 168.93	Yb
* * Actinide series	actinium 89	thorium 90	protactini 91	144.24	eptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th 232.04	Pa 231.04	U 238.03	Np	Pu [244]	Am	Cm	Bk [247]	Cf	Es	Fm	Md	No [259]

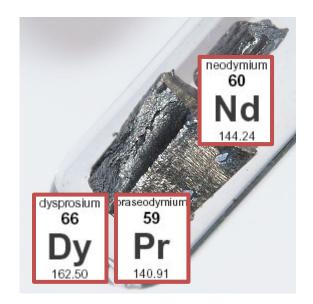
Viewpoint: US Department of Energy

- In their "2011 Critical Materials Strategy" report, the DOE identified 16 elements as critical for future energy technologies
- They are especially concerned about: dysprosium, terbium, europium, yttrium, and neodymium

Table 1 Materials in Clean Energy Technologies and Components

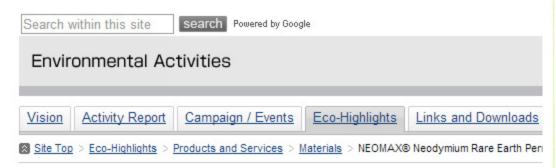

Tu	oie 1. Materiais in	clean Energy I	echnologies and	a components		
		Photovoltaic Films	Wind Turbines	Veh	icles	Lighting
	MATERIAL	Coatings	Magnets	Magnets	Batteries	Phosphors
	Lanthanum				•	•
ł.	Cerium				•	•
, e	Praseodymium		•	•	•	
Rare Earth Flements	Neodymium		•	•	•	
1	Europium					•
ų į	Terbium					•
2	Dysprosium		•	•		
	Yttrium					•
	Indium	•				
	Gallium	•				
	Tellurium	•				
	Cobalt				•	
	Lithium				•	
	Manganese				•	
	Nickel				•	

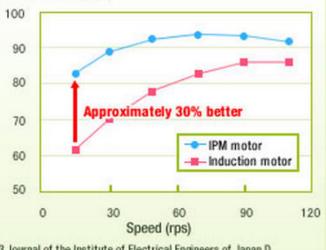
Example:


Permanent Magnets

Compact, high-strength magnets made of rare earth elements

- Developed in 1970s and 80s
- Strongest type of permanent magnet (1.4 teslas)
 - Compared to 0.5 1.0 teslas of ferrite or ceramic magnets
- Strongest PM is made of NEODYMIUM
 - "Neodymium-iron-boron" NIB magnets
 - Substitute DYSPROSIUM and PRASEODYMIUM for the neodymium
- Used in
 - Hard drives, speakers, electric generators (wind turbines), and motors (power tools to cars – ESPECIALLY electric cars)

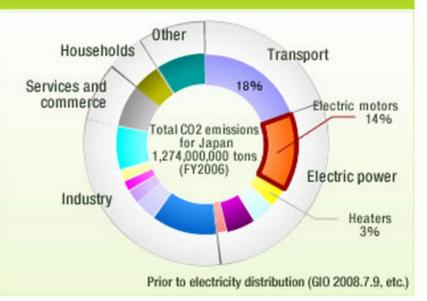



http://www.hitachi.com/environment/showcase/

NEOMAX® Neodymium Rare Earth Permanent Magnet

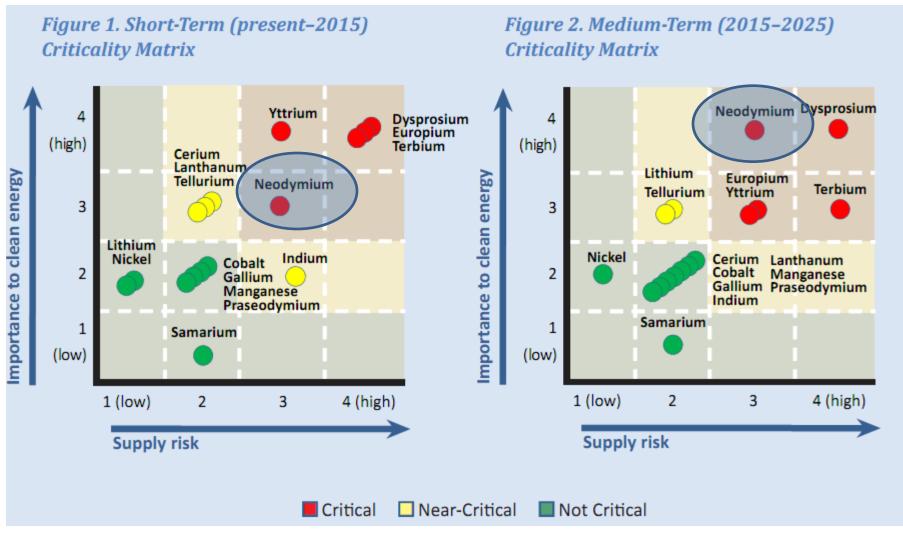
Comparison of Efficiency of IPM Motor and Induction Motor ⁻³ IPM = Interior Permanent Magnet

Motor Efficiency(%)


^{*3} Journal of the Institute of Electrical Engineers of Japan D, Vol.118-D, No.6 p.813 (June 1998)

NEOMAX® Boosts Performance and Lower Weight of Electric Motors A Significant Factor for Reducing CO2 Emi

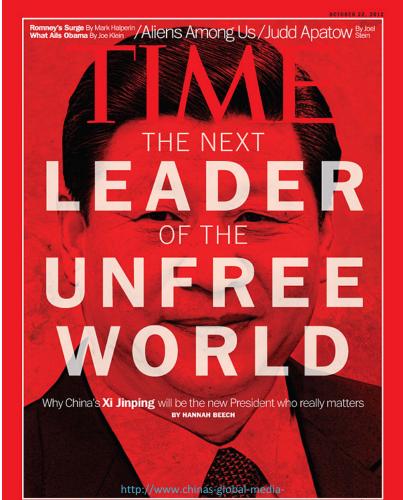
Magnets play an essential role in the modern world, being used in our applications such as the speakers in mobile phones and the electric m hybrid cars, air conditioners and washing machines. The NEOMAX® rar neodymium magnets first released in 1982* have become world leader magnetism approximately ten times that of a ferrite magnet. They help electric motors smaller and more efficient, and help reduce CO₂ emiss


* Developed by Sumitomo Special Metals Co., Ltd. in 1982. Merged with Hitac April 2007.

Emissions of Greenhouse Gases by Japan

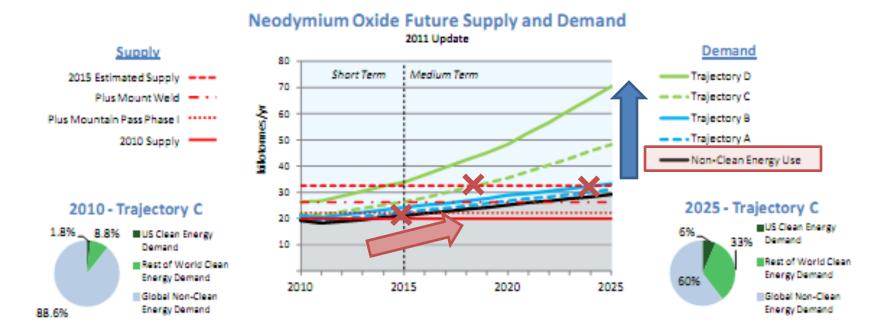
(Updated in

Short and Medium Term Criticality


DOE, 2011

Concerns with Neodymium Supply

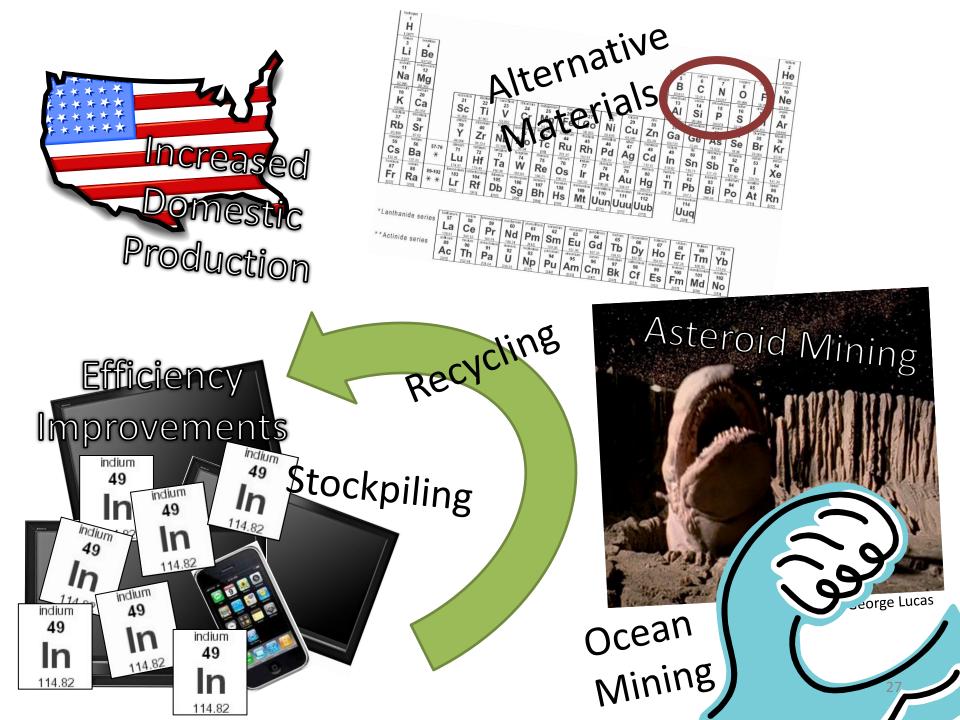
• China has reduced REE exports


In 2010, China suspended REE exports to Japan over a territorial dispute.

Prices jumped from \$50/kg (early 2010) to \$500/kg by summer 2011

Concerns with Neodymium Supply

- China has reduced REE exports
- Global demand to increase (PHEVs, EVs, and wind turbines) with slow supply response

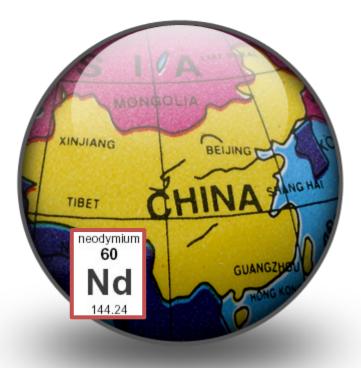


Small Groups (3-5 people) BRAINSTORM 5 Minutes

What can we do

TO SECURE

critical materials (neodymium specifically) for the future?



What the DOE proposes for Nd

- 1. Diversify global supply chains
 - Risk management
 - Facilitate extraction, processing, and manufacture in the US
 - Molycorp Company reopened its rare-earth mine in Mountain Pass, CA

The Supply Problem

- China has cheap extraction and manufacturing
 - At the cost of the environment and social equity?

What It's Like To Take Photos Of A Dying Man

OCTOBER 04, 2015 5:59 AM ET

NADIA WHITEHEAD

http://www.npr.org/sections/goatsandsoda/2015/10/04/ 439241698/what-its-like-to-take-photos-of-a-dying-man

SHARE

Arriving at a hospital seven hours' drive from his remote village in the mountains, former gold miner He Quangui is finally put in a ward. The doctors proceed to puncture his lungs with a needle to remove syringe after syringe of air. In pain, He Quangui tries to clasp the drip pulley hanging from the ceiling; his brother-in-law Mi Shiliang is at a loss for how to comfort

Sim Chi Yin/VII

him.

The Supply Problem

Selected rare earth projects outside of China (numbers 1-9 denote most advanced projects)

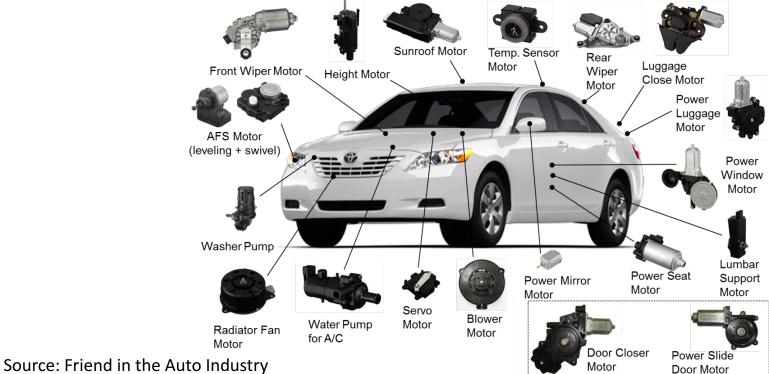
(1) Molycorp. (2) Lynas, (3) Indian Rare Earths/Toyota Tsusho/Shin-Etsu, (4) Kazatomprom/Sumitomo, (5) Great Western Minerals, (6) Vietnamese Govt/Toyota Tsusho/Sojitz, (7) Stans Energy, (8) Alkane Resources, (9) Arafura Resources, (10) Greenland Minerals and Energy, (11) Great Western Minerals, (12) Avaion Rare Metals, (13) Rare Element Resources, (14) Pele Mountain Resources, (15) Quest Rare Minerals, (16) Ucore Uranium, (17) US Rare Earths, (18) Matamec Explorations, (19) Tasman Metals, (20) Montero Mining/Korea Resources, (21) Namibia Rare Earths, (22) Frontier Resources/Korea Resources, (23) Hudson Resources, (24) AMR Resources, (25) Neo Material Technologies

Figure 4-2. Current and Projected Rare Earth Projects Outside China⁸⁷

The Supply Problem

2012: REE mine owned by Molycorp Minerals LLC reopens in California.

Estimated annual production capacity: 19,050 mt of rare earth oxides Molycorp 2013 Annual Report


What the DOE proposes for Nd

- 1. Diversify global supply chains
 - Risk management
 - Facilitate extraction, processing, and manufacture in the US
- 2. Develop substitutes
 - Material and technology substitutes
 - DOE's ARPA-E research agency introduced "Rare Earth Alternatives in Critical Technologies program"

The Wicked Problem

"70 to 120 motors are used in a luxury car"

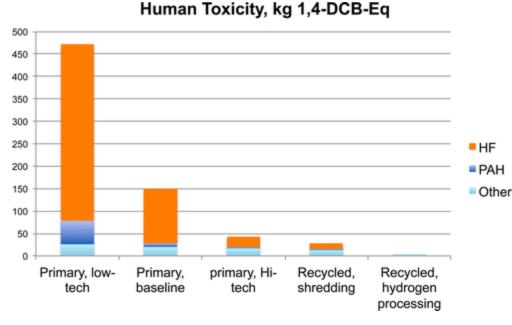
- Cars need lower weight, maximum passenger volume, and better fuel economy (CAFE standards)
- Neodymium-based motors are smaller and lighter weight for the power supplied.

innovating motion

Featured Proc

Home > Featured Produ

Flux Multiplier I Best Washing Performa


- Flux Multiplier[™] motor te
- Widest speed range was
- Industry's highest energy
- No Rare- Earth magnets

Conta

What the DOE proposes for Nd

- 1. Diversify global supply chains
 - Risk management
 - Facilitate extraction, processing, and manufacture in the US
- 2. Develop substitutes
 - Material and technology substitutes
- 3. Recycling, reuse, and efficiency
 - Research and policy for recycling economically
 - Honda has started a recycling program

We conclude that **recycling of neodymium**, especially via manual dismantling, **is preferable to primary production**, with some environmental indicators showing an order of magnitude improvement.

- Sprecher, et. al (2014) ES&T

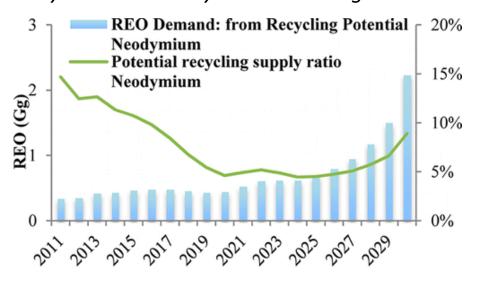
pubs.acs.org/est

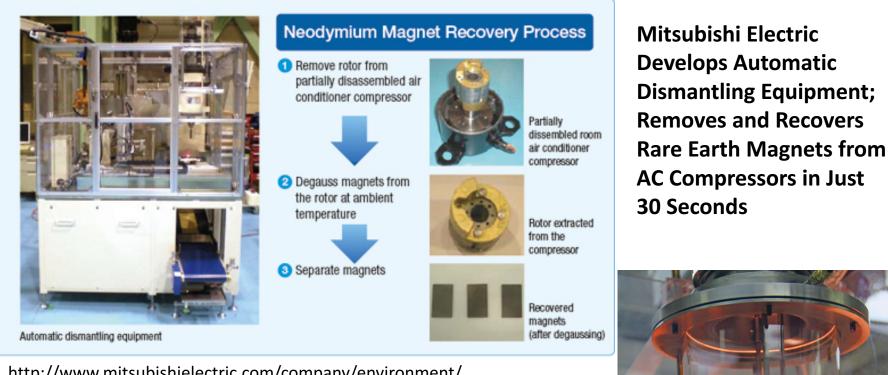
Life Cycle Inventory of the Production of Rare Earths and the Subsequent Production of NdFeB Rare Earth Permanent Magnets Benjamin Sprecher,**,** Yanping Xiao,* Allan Walton,^{||} John Speight,^{||} Rex Harris,^{||} Rene Kleijn,[‡] Geert Visser,^{\perp} and Gert Jan Kramer[‡]

Waste **flows from permanent magnets will remain small** relative to ... growing global REE demand... During the next decade *recycling is unlikely to substantially contribute to global*

nubs acs org/es

REE supply security. In the **long term, waste flows will increase sharply** and will meet a substantial part of the total demand for these metals.


- Rademaker, et. al (2013) ES&T



Recycling as a Strategy against Rare Earth Element Criticality: A Systemic Evaluation of the Potential Yield of NdFeB Magnet Recycling

Jelle H. Rademaker,*^{,†} René Kleijn,[‡] and Yongxiang Yang[§]

[†]Green Academy, De Groene Grachten, Utrechtsedwarsstraat 11, 1017 WB Amsterdam, The Netherlands

http://www.mitsubishielectric.com/company/environment/ ecotopics/rareearth/how/index.html

Ames Laboratory and USDOE Develop Process to Remove Rare Earths from NIB Magnet Scrap

Process: Mill magnets into small pieces, add magnesium, heat material, REEs enter molten magnesium leaving behind iron and boron, molten magnesium cast into an ingot, cooled, then magnesium is boiled off.

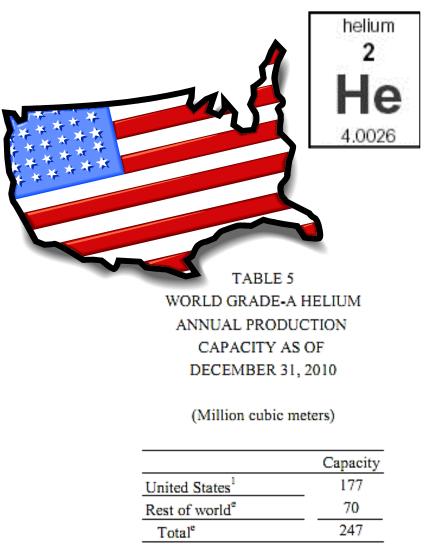
Results: REE properties very similar to unprocessed materials

https://www.ameslab.gov/news/inquiry/rare-earth-recycling

		Let's Look at TWO Examples																
hydrogen 1					Neo	dym	nium	(Vi	ewp	oint	t: US	DOE	E) ****				200	helium 2
H 1.0079			Helium (Viewpoint: Scientists)															He
lithium 3	beryllium 4	boron carbon nitrogen oxygen fluor 5 6 7 8 9															4.0026	
Li	Be		B C N O F														Ne	
6.941 sodium	9.0122 magnesium		10.811 12.011 14.007 15.999 18.998 aluminium silicon phosphorus suffur chlorine															20.180 argon
11	12		aluminium silicon phosphorus sulfur chlorine 13 14 15 16 17															18
Na	Mg		AI SI P S CI															Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercurv	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

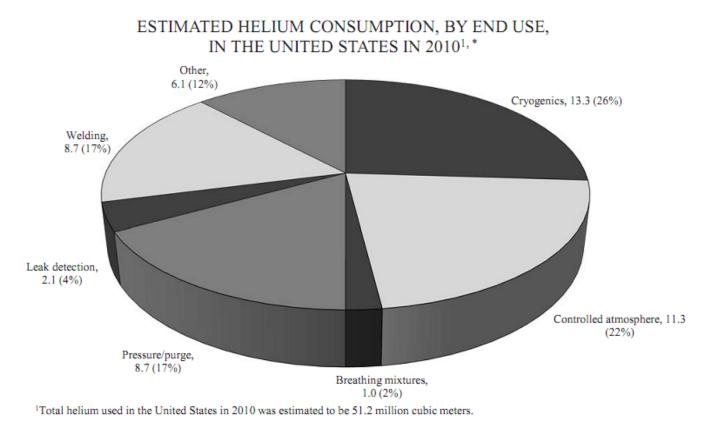
*Lanthanide series	^{lanthanum} 57 La	^{cerium} 58 Ce	^{praseodym} 59 Pr	neodymium 60	omethium 61 PM	^{samarium} 62 Sm	^{europium} 63 Eu	^{gadolinium} 64 Gd	terbium 65 Tb	^{dysprosium} 66 Dy	^{holmium} 67 HO	^{erbium} 68 Er	^{thulium} 69 Tm	ytterbium 70 Yb
	138.91	140.12	140.91	I Y G	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactini	111 04	eptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	⁷⁰ Yb
* * Actinide series	89	90	91	144.24	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Viewpoint: Scientists


• We often think of earth as a closed system for materials. Here's a secret:

Example: Helium

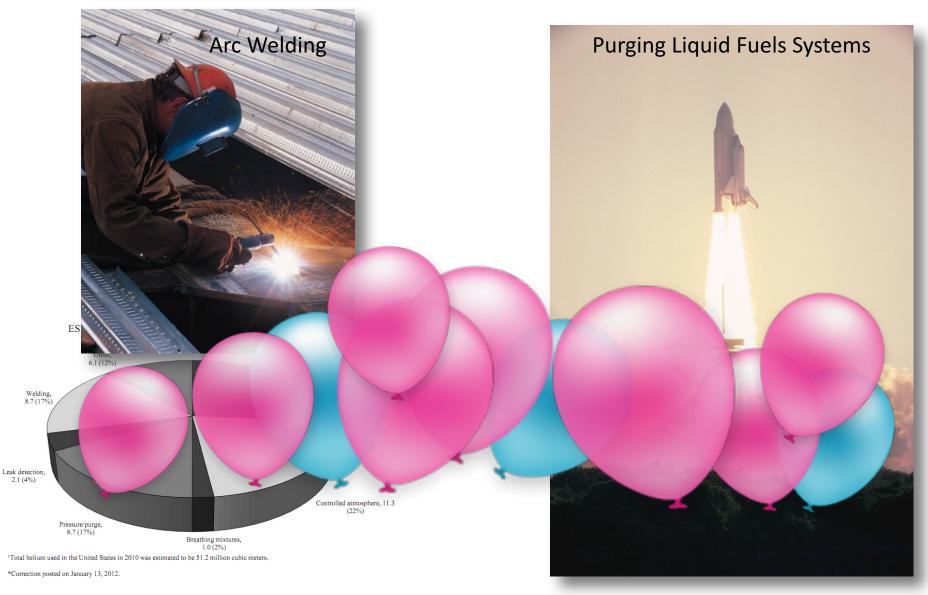
(http://minerals.usgs.gov/minerals/pubs/commodity/helium/myb1-2010heliu.pdf)

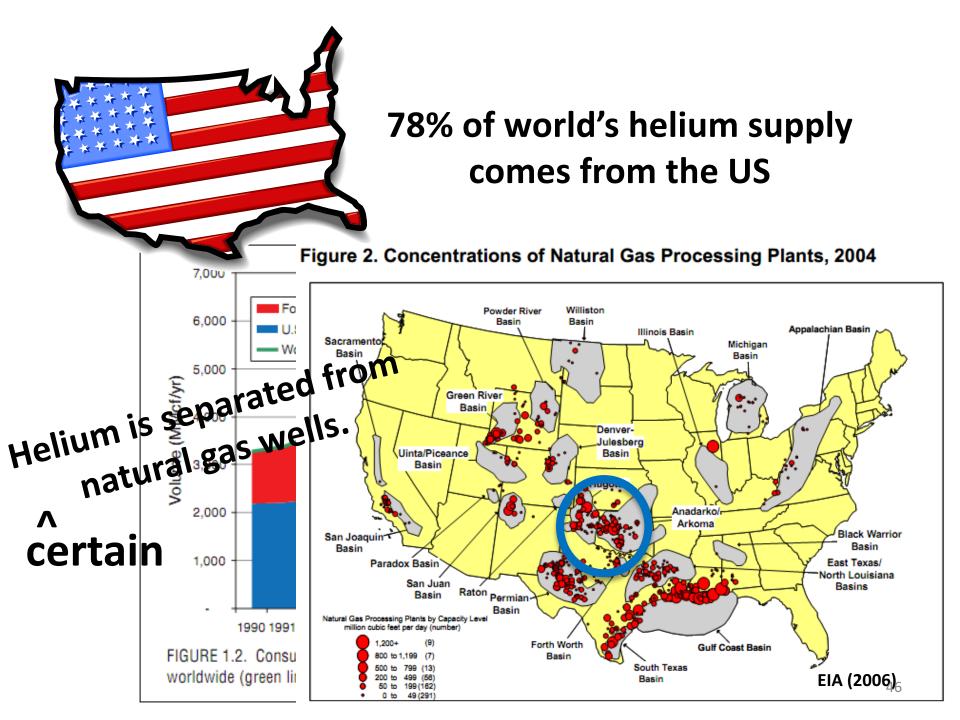

- Lowest melting point of any element (-452 degrees Fahrenheit) & inert
- Second most abundant element in the universe (produced when hydrogen atoms fuse together in stars' cores)
- Rare on earth
 - Generated through radioactive decay in Uranium and Thorium atoms (generates 3.4L/km of earth/year)
 - Exists as an impurity in natural gas fields and is extracted when it's concentration is >0.3% (economical)
- Produced (and consumed) mostly in the US – 78% of world's He supply comes from the US
- Other production locations: Algeria, Canada, China, Qatar, Poland and Russia

eEstimated.

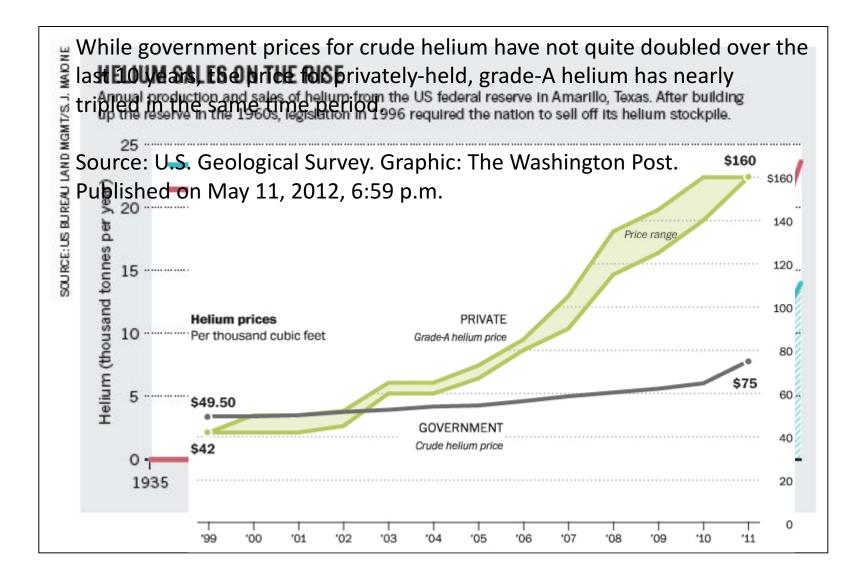
¹Includes plants on standby as well as operating plants.

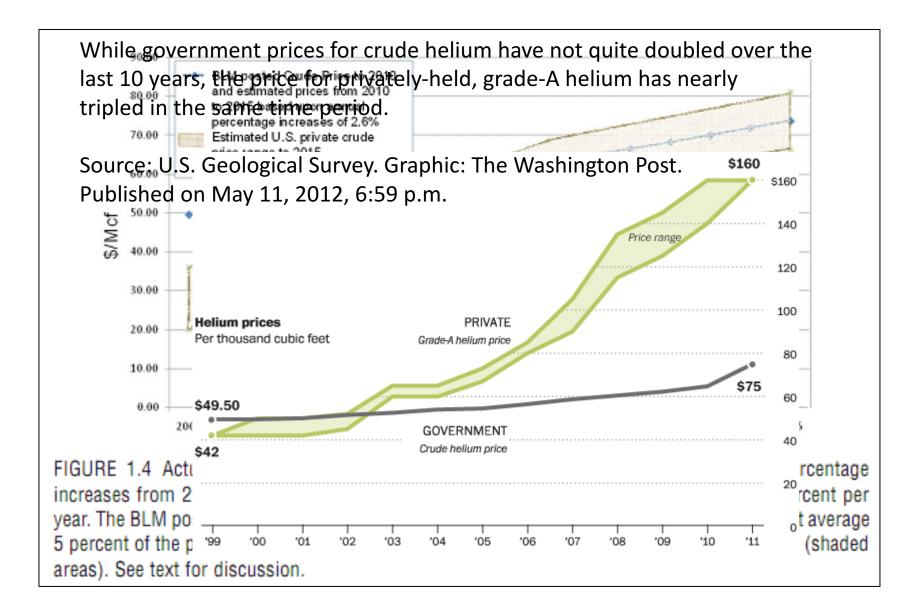
US Geological Survey




*Correction posted on January 13, 2012.

*Correction posted on January 13, 2012.




Federal Helium Reserve

- In 1996, approximately 1 billion cubic meters
- Cost of \$1.4 billion
- 1996 Helium Privatization Act
- Sales of nearly all stored He between 2005-2015
- Non-market rates

Selling the Helium Reserve National Academy Press

Selling the Helium Reserve National Academy Press

What can we do?

Politicians signed a bill (IT'S TRUE!) in 2013 that slowly ended the Helium Reserve's below-market rates.

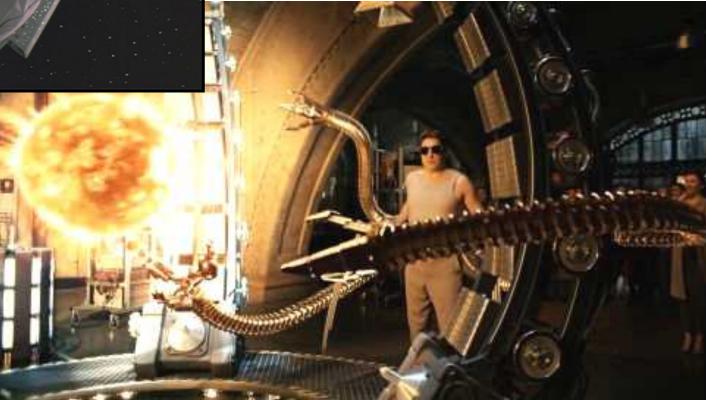
Helium is now auctioned off to highest bidder (ending price distortion)

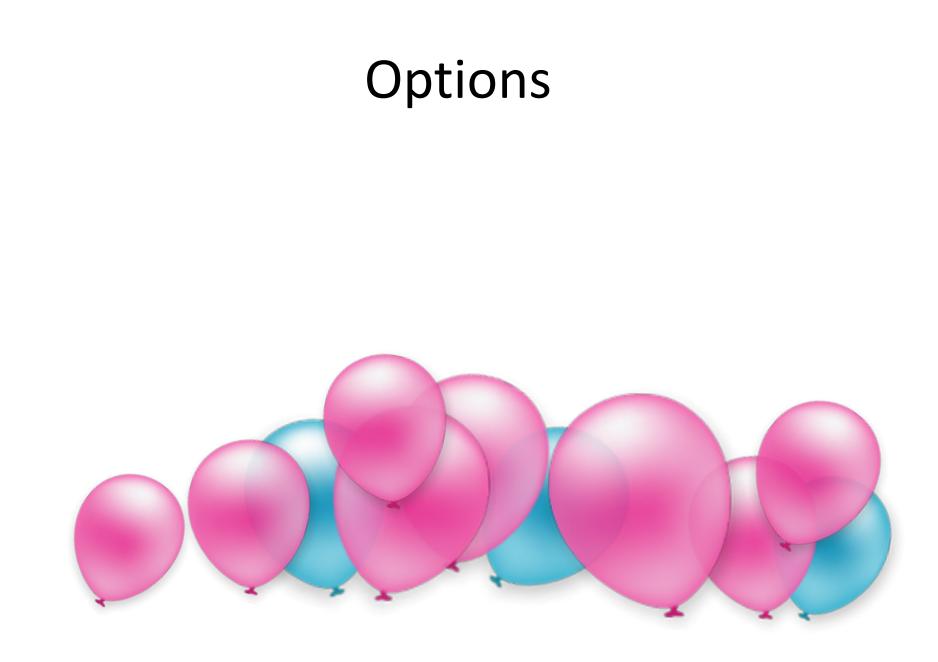
Market-driven He may ensure it's efficient and proper use, but we may still need new sources. Volatility is expected to increase as the federal reserve is depleted.

Short Term

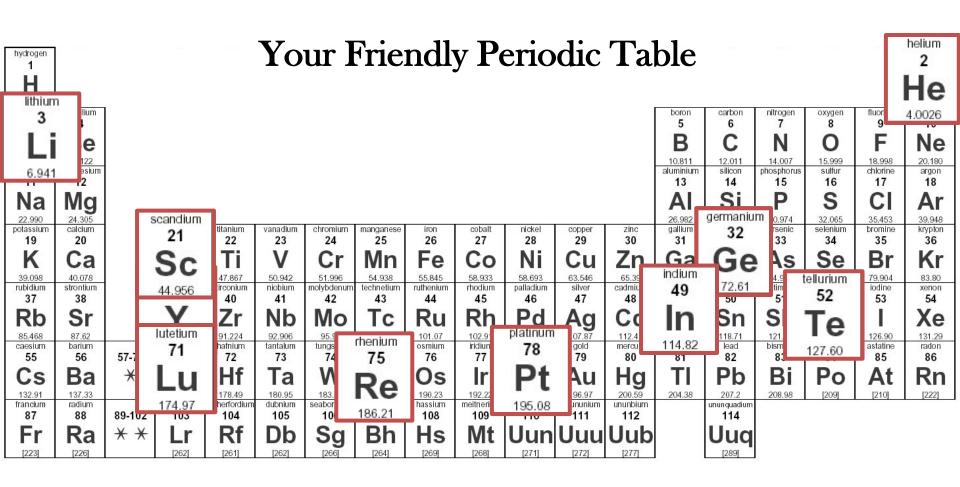
2014: Qatar becomes 2^{nd} largest helium producer with a plant that can produce 60 million m³ of He per year

2015: New plant in Colorado set to remove He from a natural CO_2 reserve (CO_2 being used in Texas for enhanced oil recovery)


There is likely to be continued helium shortages and price spikes. Highly recommended to recover and reuse He, or find alternatives.


Options

Deuterium-Tritium fusion could generate about 8 million m^3 , 1/10 of our usage.


Future atmospheric gas harvesting equipment could also become more cost-effective.

He News Articles for You

- <u>http://www.wired.com/2015/07/feds-created-</u> <u>helium-problem-thats-screwing-science/</u>
- <u>http://www.npr.org/blogs/itsallpolitics/2013/09/</u> <u>30/227772534/congress-reaches-compromise-</u> <u>deal-on-inert-gas</u>
- <u>http://www.washingtonpost.com/blogs/wonkblog/wp/2013/09/27/good-news-congress-just-averted-a-global-helium-crisis/</u>
- <u>http://www.nature.com/nature/journal/v485/n7</u>
 <u>400/full/485573a.html</u>

×	lanthanum 57	cerium 58	praseodymium 59	neodymiur 60	5 B B B B B B B B B B B B B B B B B B B	methium 61	samarium 62	europiu 63	ım ga	dolinium 64	terbium 65	dysprosium 66		mium 6 7	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Ρ	m	Sm	Ει	ı (Gd	Tb	Dy	H	lo	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[1	[145]	150.36	151.9	6	157.25	158.93	162.50	16	4.93	167.26	168.93	173.04
*	* Actinide	series	89	90	91	92	93	94	95	96	97	98	99	100	101	102	
		Ac	Th I	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			[227]	232.04 2	31.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	

"NOW WE UNDERSTAND THAT THE EARTH IS FINITE, AND WE CAN'T JUST PICK WHATEVER OFF THE SHELF AND BUILD A TECHNOLOGY WITHOUT UNDERSTANDING THE CONSEQUENCES."

- Frances Houle, Lawrence Berkeley National Laboratory (Berkeley Lab)

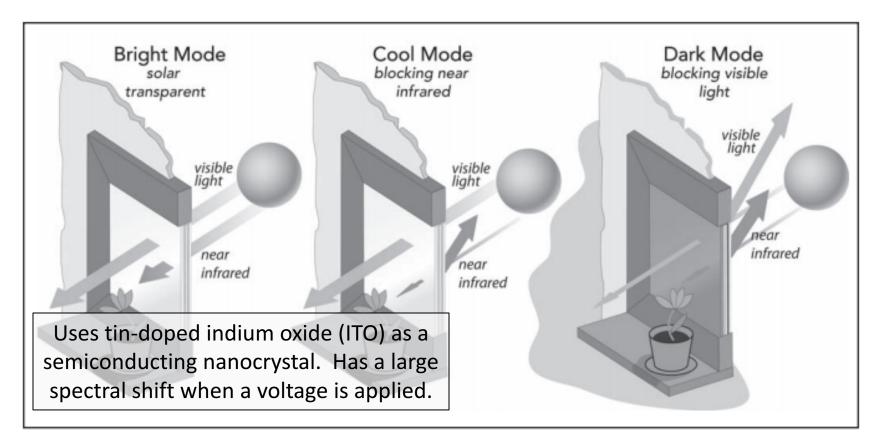
http://www.rdmag.com/News/2012/08/Materials-A-Long-Term-View-Of-Critical-Materials/

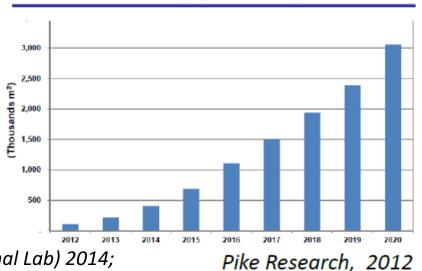
Assessing Critical Materials: New Technologies Example

Energy Design Update[®]

8

June 2013

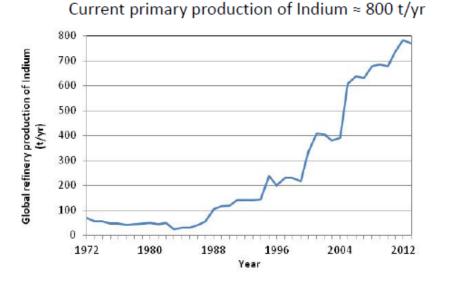


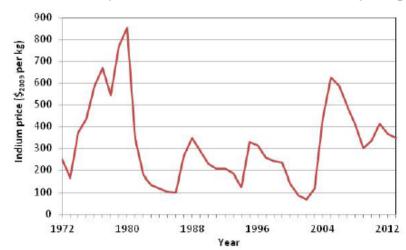

Figure 11. Milliron's team will also investigate coatings that combine the near infrared-selective plasmonic electrochromic effect with conventional electrochromic materials that can also modulate visible light, on demand. Photo courtesy Delia Milliron and Lawrence Berkeley National Laboratory.

Scaling Up Production

- Annual market demands that affect electrochromic windows
 - Current U.S. commercial window demand at 40 million m2
 - Current global window demand at 300 million m2
 - Dynamic window demand currently insignificant, but projected to reach 3 million m2 by 2020
 - Current dynamic window plant capacity at ~0.5 million m2
- Market demand estimates help characterize
 - Impacts from resource use
 - Potential energy savings
 - Projected plant capacity
 - Manufacturing methods
 - Bulk material pricing

Slide from: Arman Shehabi, et al (Lawrence Berkeley National Lab) 2014;


LCA XIV Conference (with permission)



Smart Glass Demand (Square Meters), World Market:

Supply Chain Impacts

• Example: Critical material concerns of Indium

Historical price fluctuation: <\$100 to >\$800 per kg

Raw Materials

Scenario projections:

- Medium:
 - 30 million ft² annual output (1% of total market)
 - Indium demand ≈ 8.3 t/yr (or 1.1% of 2013 production)
- High:
 - 1 billion ft² per year (≈global demand in 2020 for architectural glass)
 - Indium demand ≈ 276 t/yr (or 36% of 2013 production)

Slide from: Arman Shehabi, et al (Lawrence Berkeley National Lab) 2014; LCA XIV Conference (with permission) Indium production and cost data from USGS (2014)

Acknowledgements / Refs

- Karl Dunkle Werner, He aficionado
- Jason Vincenz, MechE extraordinaire
- UIC's Summer Institute for Sustainable Energy
- USDOE (2010). Critical Materials Strategy, US Department of Energy.
- Committee on Understanding the Impact of Selling the Helium Reserve and National Materials Advisory Board (2010). <u>Selling the</u> <u>Nation's Helium Reserve, Natl Academy Pr.</u>
- Arman Shehabi, Lawrence Berkeley National Lab

Good Reads for You

- USDOE (2011). Critical Materials Strategy, US Department of Energy.
- Erdmann, L. and T. E. Graedel (2011). "Criticality of non-fuel minerals: A review of major approaches and analyses." <u>Environmental Science</u> and Technology **45**(18): 7620-7630.
- National Research Council (2000). <u>The Impact of</u> <u>Selling the Federal Helium Reserve</u>, The National Academies Press.